
Developing Slack Bot for Kubernetes



Slack Bot key features

● Ability to respond to events in a Slack Channel

● Ability to access Kubernetes resources

● Two-way communication with interactivity features

Application Features



Interactions

● Use bot mentions to send messages to the bot -> @webinar Hi!

● Bot responds to messages -> Sleeeeeping

● Provide trigger phrase to wake up the bot -> @webinar Time to wake up!

● Bot initiates to way-communication with interactive elements -> Uses buttons

● Based on the response it provides feedback -> 

Let's see if the universe has something good to say.
"There is nothing permanent except change." by Heraclitus





Kubernetes Deployment Architecture

● Namespace: A Kubernetes namespace (ns) dedicated to the Slack Bot for logical separation within 
the cluster.

● Ingress: The entry point for the Slack service, managed by an Ingress controller (ing) to route 
traffic to the bot service.

● Bot Service: A Kubernetes service (svc) that serves as an abstraction layer to expose the bot 
application.

● Bot Deployment: The deployment (deploy) managing the bot application pods in the Kubernetes 
cluster.

● Redis: A deployment of Redis with its service (svc) for storing bot data, with a StatefulSet (sts) for 
data persistence.

● Cloud Load Balancing: Distributes incoming Slack traffic efficiently to the Kubernetes services.
● External Resources: Includes Cloud External IP Addresses, Cloud DNS for domain name 

resolution, External DNS deployment, and a Cert Manager deployment for handling SSL 
certificates, with Let's Encrypt for certificate provisioning.



Kubernetes Deployment Architecture



Kubernetes Observability

Observability Stack to support Slack Bot Deployment

● Tracing
○ Jaeger: A tracing system used for monitoring and troubleshooting microservices-based distributed systems.
○ Integrated with Grafana for visualizing trace data.

● Metrics
○ Prometheus: An open-source monitoring system with a dimensional data model, flexible query language, and alerting 

functionality.
○ Metrics from both Prometheus and Jaeger are used to gain insights into the system's performance.

● Logs
○ Grafana Loki: A horizontally scalable, highly available, multi-tenant log aggregation system inspired by Prometheus.
○ OpenSearch (formerly Elasticsearch): An open-source search and analytics engine for all types of data, including 

textual, numerical, geospatial, structured, and unstructured.
○ OpenSearch Dashboard: A visualization tool in the OpenSearch stack for analyzing log data.

● Exceptions
○ Sentry: An error tracking tool that helps developers monitor and fix crashes in real time.





Bot Technology Stack: FastAPI & Slack Bolt

● Web Application Framework
○ FastAPI: A modern, fast (high-performance), web framework for building APIs with Python 3.7+ based on 

standard Python type hints.

● Slack Integration
○ Slack Bolt Framework: A foundational framework for building Slack apps with minimal setup.

○ Capabilities: Simplifies the process of handling Slack events, actions, and commands.

● Redis Database
○ Used to support data needs for the bot.

● Containerization
○ Docker: Used to containerize the FastAPI application, ensuring consistency across various development and 

production environments.

○ Container Registry: Stores the Docker images, ready to be pulled into the Kubernetes cluster.



The architecture and deployment of the Slack 
Bot within a Kubernetes cluster showcases 
the symphony of modern technology. FastAPI 
and Slack Bolt framework come together to 
create a seamless and powerful user 
experience, while Docker and Kubernetes 
orchestrate the performance of a robust, 
scalable application.


